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Abstract In this paper, we present a new analytical model for RF and microwave noise model of nanoscale double-gate MOSFET. The model is based on a compact model for
charge quantisation within the channel and it includes overshoot velocity effects. RF and noise performances are calculated using active transmission line method. A comparison
between classical and quantum charge control, and between drift-diffusion and hydrodynamic models is done.
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considered to be a very attractive option to bias, we use the following equation:
improve the performance of CMOS ;ﬁl@

! Vas=Viu+AV, =V

2
0=2C, 26 + 26,5 +4B%1log*| 1+e
Qsz QDEP

devices and overcome some of the #
difficulties encountered in the downscaling j
of MOSFETs into the sub-50 nanometer 4
gate length regime. Due to scaling, the f

silicon thickness is ultra-thin and quantum In quantum case, the same expression can be used if a corrected oxide capacitance

confinement must be included in the 02 02 08 08 is used: C

models. Then, a self consistent solution of depth (y/t) C = ox
. . . . ox

Schrodinger-Poisson equations is needed. Fig. 1. Lowest subband eigenfunction 1+C,, Vi

We obtain a new compact charge control s
model including quantum effects whose 1 =10nmN,=10"" om

si

o
o
a

A simple relationship between inversion centroid y, and inversion charge obtained

explicit formulation is similar to classical _ . . . L
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Enx  Classical Compact Model Comparison of this model with numerical classical and quantum simulations are
0 Compact Model [1] performed using SCHRED with good agreement in the two cases.
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2k, The results show important differences in drain current, f, and noise
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44V sen 1 gate lengths. These differences are due to the velocity overshoot increasing
Finally the current is calculated using: &1 Do i the transconductance, and the hot-carrier effects in the noise temperature.
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