austria**micro**systems

Comparison of MOS Model EKV3 with BSIM3 and BSIM4

B. Senapati and E. Seebacher

Outline

- Comparison of a new charge based model, EKV3 with the BSIM3 and BSIM4 for MOSFETs
- > Extraction of model parameters in 0.35um CMOS technology for the EKV3 and BSIM3 and 0.18um CMOS technology for the EKV3 and BSIM4
- > Implementation of model parameter extraction strategy in ICCAP
- > Geometry scalability of EKV3 is verified for both technologies
- > Worst case corner modeling is also investigated and the result is presented
- > Finally, model henchmark test has been performed for the EKV3 model

EKV3 vs. BSIM3

Va=0.9(0.6)3.3V. Vb =0V

- > EKV3 is more accurate physical model for CMOS
- > Better fitting of EKV3 model with measurements compared to BSIM3
- > Comparison of the simulation results for different geometries clearly illustrates the advantage of geometry scalability in the EKV3 model

Error of Id for SHORT: W=10um, L=0.35um

EKV3 vs. BSIM4

Va=0.6(0.4)2.2V. Vb =0V

Va=0.6(0.4)2.2V. Vh =0V

Id vs. Vg for W=10um, L=0.35um due to gate

induced drain leakage effect in EKV3 model

- > Similar fitting quality for both the EKV3 and BSIM4 with measurements
- > Less number of model parameters in EKV3 compared to BSIM4
- lowering, mobility reduction due to vertical field, carrier velocity saturation, channel length modulation, polysilicon-gate depletion effects, quantum mechanical effective on gate oxide thickness, gate-induced drain leakage, gate leakage current, and overlap capacitance

Worst Case Model

- Determination of the worst case parameters is performed using typical parameters of the MAP
- Minimum and maximum value of model parameters are calculated as follows:

$$\begin{split} & \bmod l_par_\min = \bmod el_par_tm \left[1 - \left(\frac{par_typ - par_min}{par_typ} \right) \right] \\ & \bmod el_par_\max = \bmod el_par_tm \left[1 + \left(\frac{par_max - par_typ}{par_typ} \right) \right] \end{split}$$

Extracted model parameters for different worst cases (WP, TM, WS) are applied to EKV3 parameters LOV, CJ, CJSW, COX, DL, DW, VTO, KP, GAMMA

Benchmark Test

> EKV3 is a self-consistent and charged based physical model for new generation MOSFETs

- > Most of the model parameters are directly linked to the process control monitoring and thus parameter extraction is much simple
- > EKV3 has less number of parameter set while offering similar scaling ability as BSIM3/4
- Also, symmetrical test has been passed successfully for both DC and CV characteristics