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Goals

� Review of the main compact modeling issues in 
thin film SOI MOSFET modelling

� Review of the main compact modelling
approaches in different types of thin film SOI 
MOSFET modelling

� Utilisation of models for technological and
performance predictions
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Outline

� Introduction
� General electrostatics
� Fully-Depleted (FD) SOI MOSFET
� Accumulation-Mode (AM) SOI MOSFETs
� Multi-Gate MOSFETs
� RF and noise modelling
� Conclusions
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Introduction

� MOSFET scaling trend in near future will not be as straightforward as it 
has been in the past because fundamental material and process limits 
are imminent. 

� In order to reach below the 32 nm technology node, implementation of 
advanced, non-classical MOSFETs with enhanced drive current and 
acceptable control of short channel effects are needed. 

� Advanced thin-film SOI MOSFETs (e.g., single or multiple-gate 
MOSFETs) are very promising structures for the downscaling of 
MOSFETs below the 32 nm technological node.
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Introduction

� Thin film Fully Depleted SOI MOSFETs offer important 
advantages over Partially-Depleted SOI MOSFETs:
� Lower body factor Higher saturation current
� Better subthreshold slope Smaller mobility degradation
� Reduced short-channel effects
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Introduction

� The non-classical multi-gate devices such as Double-Gate (DG) 
MOSFETs, FinFETs or Gate-All-Around (GAA) MOSFETs show an 
even stronger control of short channel effects, and increase of on-
currents taking advantage of volume inversion/accumulation. 

DG MOSFET GAA MOSFET FinFET
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Introduction

� The availability of accurate compact models of Multiple-Gate
MOSFETs in integrated circuits is critical for the futuredesign of
circuits using those devices

� Circuit design requires a complete small-signal model, with
analytical or semi-analytical expressions of:
� Current

� Total charges

� Transconductance and conductance

� Transcapacitances
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General Electrostatics

� The good electrostatic control of the channel by the gate in ultrathin body
MOSFETs (full depletion in subthreshold, i.e., no punchtrough) allows to use 
undoped or lightly-doped Si bodies. Mobility is higher in undoped bodies than
in doped ones.

� In ultrathin body MOSFETs, a proper description of the electrostatics should 
take into account the effects of both dopants and charge carriers.

� In FD SOI MOSFETs the Si film is fully depleted, while the front and back 
interface can be inverted, depleted or accumulated
� The practical case is: front interface inverted and back interface accumulated

� In Multi-Gate MOSFETs, the Si body can be fully inverted or accumulated 
(volume inversion or accumulation)
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General Electrostatics

� Generally, in single or double-gate SOI MOSFETs the electrostatic potential in 
the semiconductor body, φ(x,y), is given by Poisson’s equation:

� where x and y are the direction parallel and perpendicular to the gate, 
respectively, and Na is the acceptor doping density in the silicon body (n-
channel device), n is the electron density and εSi is the dielectric permittivity of 
silicon. 
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General Electrostatics

� If we consider that the device is in quasi-equilibrium (which is consistent with 
the drift-diffusion transport mechanism), and we neglect quantum confinement, 
the electron density becomes:

� in the doped device and

� in an undoped device. 

� Here,  is the intrinsic carrier density in silicon, VT is the thermal voltage, and    
is the non-equilibrium quasi-Fermi level referenced to the Fermi level in the 
source. It satisfies the following boundary conditions: 

� at the source and                    at the drain, where VDS is the drain-
source bias. 

� The corresponding boundary conditions for φ are: 
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General Electrostatics

� In addition, the boundary conditions for  at a given silicon-insulator interface 
is:

� where Coxi = εox/toxi is the gate insulator capacitance per unit area, εox and toxi are 
the insulator permittivity and thickness, respectively, tSi is the silicon body 
thickness, VGS is the gate-source voltage, φMS is the gate work function 
referenced to the silicon body, Vbi is the built-in voltage between the body and 
the source or drain contacts, and Qi is the total charge sheet density (per unit 
area of the gate) controlled by the vertical field at the i-interface . 

� The above equation arises from the continuity of the normal component of the 
displacement vector across interfaces. 
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General Electrostatics

� In general, multiple gates with different properties and/or 
gate biases, require separate boundary conditions. 

� However, for a symmetrical DG MOSFET, we have the 
following additional boundary condition at the center 
plane: 

� The same boundary condition (referred to the field in the 
radial direction) holds at the axis of a cylindrical GAA 
MOSFET
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1D models

The first step to develop a compact model is to consider a well behaved device, with 
good electrostatic control by the vertical field (from the gate) and where  the 
derivative of the lateral field in the direction of the channel length can be 
neglected compared to the derivative of the vertical field in the direction 
perpendicular to the channel.

� This is the gradual channel approximation, and simplifies the electrostatic 
analysis.

� This leads to neglect the short-channel effects
� In thin-film SOI MOSFETs, we expect that a long-channel device model can be 

applied to significantly shorter channels than in standard MOSFETs
� We also have considered an n-channel device, with acceptor doping or with no 

doping. The hole concentration can be neglected in the normal operation regime.
� Of course, our analysis can easily be extended to p-channel devices
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1D models: doped SOI MOSFET

� In a doped thin-film SOI MOSFET:

� The surface electric field can be written in terms of the mobile charge density 
(in absolute value) per unit area at each interface, Q, and  the depletion charge 
density per unit area (in absolute value) QDep=qNAtSi (tSi being the Si film 
thickness) whatever x:
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1D models: FD SOI MOSFET

� This 1D Poisson’s solution cannot be solved analytically

� In Single-Gate FD SOI MOSFETs an analytical solution, valid for all operating regimes, 
is possible with the following assumptions:
� Back interface in depletion (practical case)
� Charge sheet approximation (the channel has an infinitesimal thickness compared to the 

thickness of the depleted region, i.e., the Si film)

�

� Linear relationship between mobile charge density and surface potential
� The charge sheet approximation may not be valid in Single-Gate UTB SOI MOSFETs, where 

the front channel may occupy a non-negligible portion of the Si thickness 
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1D models: FD SOI MOSFET

� No need to linearize the charge in FD SOI MOSFETs to obtain a 
relatively simple model

� Charge-based and surface-potential based models are equivalent

� Expressions of total charges can be derived from this linear 
relationship

�
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Short-Channel Effects

� If the doping is high, and the mobile charge can be neglected in the 
subthreshold regime, a simple solution for the potential can be obtained, which 
leads to an analytical expression of the threshold voltage that includes the 
scaling dependences (and therefore the threshold voltage roll-off and DIBL):

�

� In planar SOI MOSFETs, this solution is written as a superposition ,where       
is the solution of the 1D Poisson’s equation, which includes the doping charge 
term, and             is the solution of the remaining 2D Laplace equation. 

� Additional approximations are needed to solve the 2D Laplace’s equation
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Short-Channel Effects

� In FD SOI MOSFETs the 2D Poisson’s equation in subthreshold can by solved 
by neglecting the mobile charge density, which is much lower than the doped 
charge density

� An analytical expression of the threshold voltage, that takes into account the 
scaling dependencies, the roll-off and the DIBL can be obtained from that 
solution after using several approximations and a few adjustable parameters 
(quasi-2D model). The electrostatic short-channel effects are accounted for (in 
many models) by means of the threshold voltage expression, which is used in 
the drain  current expression derived for long-channel devices

� Standard FD SOI MOSFET models take into account the short-channel effects 
using this approach
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First explicit charge-based compact 
FD SOI MOSFET model

� Developed by B. Iñiguez, D. Flandre et al (1994)
� It is charge-based and charge conserving
� Available in IsSpice (Intusoft)
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Standard Models of FD SOI 
MOSFETs

� BSIMSOI

� UFSOI

� HiSIM-SOI
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BSIMSOI

� Developed as an extension of a bulk MOSFET model
� It extends a strong inversion explicit model by using proper interpolation 

functions
� It includes a smooth transition between the PD and the FD regime

(Dynamically Depleted SOI MOSFET)
� Temperature dependence of threshold voltage, mobility, saturation velocity, 

parasitic resistance, and diode currents

� Different gate resistance options for RF simulation:
� Intrinsic input gate resistance, reflected to the gate from the intrinsic channel 

region. It is bias dependent and a first-order non-quasi static model, for RF and 
rapid transientMOSFET operations

� Last version: BSIMSOI 4.0: addresses several new issues in modeling sub-0.13 
micron CMOS/SOI high-speed and RF circuit simulation. 
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BSIMSOI

� Improvements of BSIM 4.0:
� Asymmetric current/capacitance model S/D diode and asymmetric S/D resistance; 
� Improved GIDL model with BSIM4 GIDL compatibility
� Noise model Improvements; 

� Improved width/length dependence on flicker noise 
� SPICE2 thermal noise model is introduced as TNOIMOD=2 with parameter NTNOI that adjusts the 

magnitude of the noise density 
� Body contact resistance induced thermal noise 
� Thermal noise induced by the body resistance network 
� Shot noises induced by Ibs and Ibd separated 

� A two resistance body resistance network introduced for RF simulation; 
� Threshold voltage model enhancement; 

� Long channel DIBL effect model added 
� Channel-length dependence of body effect improved 

� Drain induced threshold shift(DITS) model introduced in output conductance; 
� Improved model accuracy in moderate inversion region with BSIM4 compatible Vgsteff;
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FD/SOI UFSOI

� The University of Florida developed one model for PD SOI MOSFETs (UFPDB) 
and one model for FD SOI MOSFETS (FD/SOI UFSOI)

� It is charge-based, and considers 5 terminals
� It is strongly physically-based, and needs iterations
� The model  accounts for the charge coupling between the front and back gates
� It includes a two-dimensional analysis of the electrostatic potential in the SOI film 

and underlying BOX for subthreshold-region operation. 
� The model assumes that the film is strongly FD, except in and near the 

accumulation region where it accounts for the majority-carrier charge, and hence 
dynamic floating-body effects.

� Two dimensional analysis for weak-inversion current
� Spline interpolations of current and charge across a physically defined, 

bias-dependent moderate-inversion region linking the weak- and strong-
inversion formalisms
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FD/SOI UFSOI

� Temperature dependence is also implemented, without the need for any 
additional parameters

� Physics-based noise modeling for AC simulation, which accounts for 
thermal noise from the channel and parasitic series rresistances, shot noise 
at the source and drain junctions, and flicker noise in the channel.

� The temperature-dependence modeling is the basis for a self-heating 
option, which uses special iterate control for the local device temperature 
node.

� Because of the process basis of the models, parameter evaluation can be 
based in part on device structure

� Option for a strained Si/SiGe channel.
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HiSIM SOI

� Based on a complete surface-potential description. 
� The surface potential in the MOSFET channel, and  the potentials at both 

surfaces of the buried oxide
� This allows to include all relevant device features of the SOI-MOSFET
� An additional parasitic electric field, induced by the surface-potential 

distribution at the buried oxide, has to be included for accurate modeling
of the short-channel effects.

� It seems to have better convergence properties than BSIMSOI and UFSOI
� It includes a 1/f noise model
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AM SOI MOSFET modelling

� In thin-film SOI CMOS circuits, nMOS devices are FD SOI MOSFETs, but 
pMOS devices can be AM SOI MOSFETs

� Different operating regimes have to be considered in AM SOI MOSFETs: 
subthreshold (full depletion), above threshold conduction in the quasi-
neutral region, and surface accumulation

�
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AM SOI MOSFET modelling
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AM SOI MOSFET modelling

� The first compact models for AM SOI MOSFETs were developed by K. W. Su and J. 
B. Kuo (DC model, 1997) and B. Iñiguezet al (charge-based model, 1999).

� No model is available in commercial circuit simulators.
� AM SOI MOS modeling is more complex than FD SOI MOS modeling. A square root 

dependent depletion region width, changing along the channel, must be considered, as 
well as an equation relating the accumulation charge sheet density with the surface 
potential.

� J. B. Kuo et al linearized later the square root.

�
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AM SOI MOSFET modelling

� In very thin AM SOI MOSFETs surface accumulation 
takes place with full film depletion

� The resulting model has the same form as a FD SOI 
MOSFET model

�
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Multi-Gate MOSFET modelling

� No models currently available in circuit simulators.
� They face important challenges for nanoscale devices: scaling with volume

inversion/accumulation, quantum confinement, hydrodinamic transport
� Models under development:

� BSIM-MG (based on BSIMSOI)
� UFDG (extension of FD/SOU UFSOI)

� Applicable to symmetrical DG, assymmetrical DG MOSFETs, UTB 
SOI MOSFETs and FinFETs

� It considers quantum confinement self consistently (Compact Poisson-
Schrödinger Solver)

� It accounts for velocity overshoot
� The carrier transport and channel current are modeled as quasi-ballistic 

via an accounting for velocity overshoot, derived from the Boltzmann 
transport equation and its moments, and a QM-based characterization of 
mobility
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1D models: doped DG MOSFET

� By integrating the Poisson’s equation between the centre (y=0) and the top 
surface of the film (y=-tsi/2) we get:

� where                  is the surface potential and             is the potential in the 
middle of the film. 

� Unfortunately, the potential at the center is unknown and we cannot  
analytically integrated for the potential. 

� An analytical model is possible with an approximate expression of the 
difference between the two potentials:
� The constant value obtained in the subthreshold/depletion region to well above 

threshold [Francis 94, Moldovan 07]; this is valid up to well above threshold.
� An empirical expression that, using adjustable parameters, fits the entire range of 

operation [Cerdeira 08]
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1D models: undoped DG MOSFET

� For undoped DG MOSFETs, Poisson’s equation is:

� By solving Poisson’s equation with the appropriate boundary 
conditions [Taur 04]:

� Where β is a constant obtained from the boundary conditions
� The following relation is obtained:

� where ∆φ is the work function difference between the gate 
electrode and the intrinsic silicon
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1D models: undoped DG MOSFET

� The drain current is obtained as:

� From Gauss’law

� The following expression of the drain current is obtained [Taur 04]:

� Shortcoming: ID cannot be written in a charge-based form
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1D models: undoped DG MOSFET

However, the a unified charge control model can be 
obtained by making a few approximations [Sallese]:

� where CSi is the silicon capacitance and Cox is the oxide 
capacitance.

� The same type of charge control model was obtained 
in doped DG MOSFETs, with the needed approximations
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1D models: undoped DG MOSFET 

� The drain current is obtained as:

� From the charge control model:

� Where 

� Finally we get the expression:
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1D models: Cylindrical GAA MOSFET

� In a well-behaved cylindrical GAA MOSFET, the electrostatic behaviour 
of the device is described by the 1D Poisson’s equation in the radial 
direction.

� In an undoped cylindrical n-type SGT-MOSFET Poisson’s equation 
takes the following form (in cylindrical coordinates):

� where                      , ψ(r) the electrostatic potential and V the electron quasi-
Fermi potential. 

� Boundary conditions:

Exact solution:

B determined from boundary conditions
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1D models: Cylindrical GAA MOSFET

� From Gauss law:

� Using                             ,the charge control model that is obtained is:

� where

� The drain current is calculated from:

� Using                                             we obtain:
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1D models: DG MOSFET

Transfer characteristics, for V DS=0.05V (a) and for V DS=1V (b) in linear scale 
and in logarithmic scale Solid line: Atlas simulati on; Symbol line: our compact 

model
doping level N A=6.1017 cm -3; silicon thickness t Si=31nm; oxide thickness 

tox=2nm; channel length L=1µm and width W=1µm.
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1D models: Cylindrical GAA MOSFET

Output and transfer characteristics obtained from the analytical model (solid lines)
compared with numerical simulations from DESSIS-ISE (symbols).



MOS-AK September 2008 B. Iñiguez 40

1D models: FinFET
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In general, in symmetric Multi-Gate MOSFETs

Charge associated to top, lateral and total 
charge calculated with ATLAS 3-D 
simulations and with the unified charge
control model (FinFET with Wfin=10 nm, 
Hfin=50 nm)
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1D models: Independently-Biased DG 
MOSFET

� A similar unified charge control model is obtained
assuming the back interface in weak inversion, but
without assuming the charge sheet approximation:

� Where
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1D models: Independently-Biased DG 
MOSFET
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channel length L=1µm,  width W=1 µm,  silicon oxide thickness 

tox=2 nm and silicon film thickness tSi=31 nm .
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2D models Multi-Gate MOSFETs

� If the doping is high, and the mobile charge can be neglected in the 
subthreshold regime, a simple solution for the potential can be obtained, which 
leads to an analytical expression of the threshold voltage that includes the 
scaling dependences (and therefore the threshold voltage roll-off and DIBL):

�

� In DG SOI MOSFETs, this solution is written as a superposition ,where       is 
the solution of the 1D Poisson’s equation, which includes the doping charge 
term, and             is the solution of the remaining 2D Laplace equation. 

� In GAA MOSFETs, the solution is written as: 

� Additional approximations are needed to solve the 2D Laplace’s equation
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2D models

� An analytical expression of the threshold voltage, that takes into account the scaling 
dependencies, the roll-off and the DIBL can be obtained from that solution after using 
several approximations and a few adjustable parameters (quasi-2D model). The 
electrostatic short-channel effects are accounted for (in many models) by means of the 
threshold voltage expression, which is used in the drain  current expression

� More rigorous solutions (fully 2D or 3D models, or “predictive models”):

� Truncation of series of hyperbolic functions (DG MOSFETs, FinFETs), or Bessel 
functions (GAA MOSFETs)

� Conformal mapping
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2D models (series truncation method): 
DG MOSFET

Subthreshold swing for DG MOSFET
with tox=2nm.  VDS=10 mV.
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2D models (series truncation
method): DG MOSFET
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2D/3D models (conformal mapping
technique)

Schematic view of the DG MOSFET cross-section (a). 
The extended body maps into the upper half-plane of the (u, iv)
plane (b), where the u-axis, the iv-axis, and the bold semicircle
with radius 1/√k represent the boundary, the G-G and the S-D 
symmetry axis, respectively. The four corners of the boundary are 
located at u = ±1 and ±1/k. 
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2D/3D models (conformal mapping
technique)

2D/3D potential model in subthreshold derived using conformal mapping

1D potential model well above threshold (kernel model)

4th order polynomial expression of the potential in the transition regime, 
imposing continuity everywhere
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2D models: Analysis of the saturated region in 
DG MOSFETs
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2D models: Analysis of the saturated region in 
DG MOSFETs

� Poisson’s equation is solved in the saturated 
region:

� we chose a power law as an approximation for the potential 
profile along y 
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2D models: Analysis of the saturated region in 
DG MOSFETs
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2D models: Analysis of the saturated region in 
DG MOSFETs
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Boundary conditions:

∆L, vsat, Vdeff being respectively the length of the saturation region,
the saturation velocity, and the effective drain-source voltage. 

φb is the surface potential at the source and at threshold condition

k=2 for nMOSFETs. k=1 for  pMOSFETs

We obtain the following solution:
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2D models: Analysis of the saturated region in 
DG MOSFETs

∆L is then obtained from ( ) ( )bdsSd Vx φφϕϕϕ +==== 0
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2D models: Analysis of the saturated region in 
DG MOSFETs
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3D models:FinFET

� This modelling technique can be extended to FinFETs, 
considering that the electrostatic potential solution will be the
sum of several components:

� Where φ2D(y,z) is the 2D potential and related to 1D potential as

� With boundary conditions

� VGS1 is the potential applied on both left/right and top gate and VGS2 is the 
potential applied on the bottom gate
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3D models:FinFET

� φ1D(y) is the 1D potential solution:

� With boundary conditions:

� An analytical expression is found for φ1D(y) 
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3D models:FinFET

� The 3D potential component is the solution of the remaining 3D Laplace’s 
equation with boundary conditions

� An analytical expression is found for φ3D

� The approximations used to obtain the analytical solution were to consider that:

� φF is constant along the channel (which is valid in subthreshold) and equal 
to its value at the source end of the channel

� the short-channel effects are not very severe, so that φ1D is the dominant 
potential contribution for the electron charge density 
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3D models:FinFET

� Using our analytical model for the electrostatic potential, we obtain an
analytical expression of the location of the virtual cathode (the point along the 
channel where the potential is minimum, and therefore, of the minimum value 
φmin

� The position of the virtual cathode will be instrumental to derive the 
subthreshold swing and threshold voltage expressions. 

� Subthreshold swing and threshold voltage models can be developed by taking the values 
of the integrands at the conduction path (yc,zc)
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3D models:FinFET

Good agreement with ·3D numerical simulations (DESSIS-ISE)
and experimental measurement (devices fabricated by IMEC, 
Belgium, and measured at UCL, Belgium)
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3D models:FinFET

Threshold voltage roll off and DIBL
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Quantum effects

� If the silicon layer in the DG and GAA MOSFETs is thinner than 10 nm, 
quantum confinement cannot be ignored, and Poisson’s equation should be 
solved self-consistently with Schrödinger’s equation.

� For this case, an analytical solution is not possible without making assumptions 
of either the shape of the potential distribution or of the electron distribution. 
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Quantum effects

� The classical compact model can be extended to include quantum effects by using an 
effective oxide capacitance that takes into account the position of the inversion 
centroid, which is a function of the inversion charge:
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Quantum effects

� This modeling of the quantum confinent has been extended to FinFETs

� Total charge sheet density numerically calculated (  classic and o quantum) and the 
charge control model (solid-line) for a FinFET with (Wfin=10 nm, Hfin=30 nm, 

tox=1.5 nm, tbox=50 nm).
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Hydrodynamic model

� In extremely short channel DG MOSFET the channel is quasi-ballistic, thus an 

important overshoot velocity is expected

� Using a simplified energy-balance model, the electron mobility is a function of 

the electron temperature related to the average energy of the carriers.
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Hydrodynamic model

� In contrast with classical drift-diffusion models, the saturated velocity in the 
saturation region due to non-stationary effects can achieve several times the 
stationary saturation velocity, vsat.

� This phenomenon is known as velocity overshoot.

� In linear region, the carrier velocity can be obtained from the mobility:
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Hydrodynamic model

� Using the charge control models previously presented and the velocity 
expression given above, the drain current in the linear channel region can be 
obtained:

� As a first approximation, in the linear region we can suppose that the lateral 
field is linear from a small value at the source end to the saturation field at 
x=Le (Ex=Esat·x/Le).
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Hydrodynamic model
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Charge modelling

� The total channel charge is obtained by integrating the mobile charge density 
over the channel length.

� In doped DG MOSFETs, using the charge control model above explained:

� The total gate charge is: QG=-QTot-Qox+WLQDep, where Qox is the total oxide 
fixed charge at both front and back interfaces. 

( )∫ ∫−=−=
L V

DS
Tot

DS

dVQ
I

WQdxWQ
0 0

2222
µ

( ) ∫ 













+
++−=

d

s

Q

Q DepoxDS
Tot dQ

QQ

Q

q

kT
Q

q

kT

C

Q

I
WQ

22
22

µ

( ) [ ] d

s

Q
QDepDepDep

oxDS
Tot QQQ

Q
QQ

q

kTQ

q

kT

C

Q

I
wQ

























+++−++−= log

223
2 2

223
2 µ



MOS-AK September 2008 B. Iñiguez 69

Charge modelling

� The total drain and source charges are obtained as:

� The transcapacitances are necessary to develop the small-signal model. They 
are obtained by differentiating the total charges with respect to the applied 
voltages.

� There are 6 transcapacitances. 4 of them are independent.

( ) ( )

dQ
QQQq

kT

C

QQ

QQ
QQQ

q

kT

C

QQ
Q

LI

w
Qdx

L

x
WQ

Depox

Q

Q Deps

Dep
Deps

ox

s

DS

L

D

d

s





























+
++⋅

⋅








































+
+

−−+












 −
=−= ∫∫

111

log2
2

2
2

22
2

2

23

0

µ

DTotS QQQ −=



MOS-AK September 2008 B. Iñiguez 70

Charge modelling

� In independently-biased DG MOSFETs we should consider a 
front gate charge and a back gate charge
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Charge modelling

� The intrinsic capacitances, Cgd and Cgs, are obtained as:

� where i=d,s

� The non-reciprocal capacitances Cdg and Csg are obtained as:

� The capacitances Csdand Cds are computed as follows 
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Charge modelling

-

Normalized gate to drain capacitance (a, 
b) and gate to source capacitance (c, d) 
with respect to the gate voltage, for 
VDS=1V (a, d) and  V DS=0.05V (b,c). Solid 
line: Atlas simulations; Symbol line: our 

model. Doped DG MOSFET with NA=6·1017 cm-3

Normalized drain to gate 
capacitance (a, c) and source to 
gate capacitance (b, d) with 
respect to the gate voltage, for 
VDS=1V (a, b) and V DS=0.05V (c,d). 
Solid line: Atlas simulations; 
Symbol line: our model. Doped DG 
MOSFET with NA=6·1017 cm-3
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Charge modelling

� In undoped cylindrical GAA MOSFETs:
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-

Charge modelling

Normalized drain to gate capacitance (a, 
c) and source to gate capacitance (b, d) 
with respect to the gate voltage, for 
VDS=1V (a, b) and V DS=0.1V (c, d). Solid 
line: DESSIS-ISE simulations; Symbol 
line: analytical model

Normalized drain to source capacitance 
(c,d) and source to drain capacitance (a, b) 
with respect to the gate voltage, for V DS=1V 
(a, d) and V DS=0.1V (b, c). Solid line: 
DESSIS-ISE simulations; Symbol line: 
analytical model
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Charge modelling

� In undoped DG MOSFETs:
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-

Charge modelling

Normalized gate to drain capacitance (a, b) and gat e to 
source capacitance (c, d) with respect to the gate 
voltage, for V DS=0.05V (b,c) and  V DS=1V (a,d). Solid line: 
DESSIS-ISE simulations; Symbol line: analytical mod el

Normalized drain to gate capacitance (a, c) and sou rce 
to gate capacitance (b, d) with respect to the gate  
voltage, for V DS=1V (a, b) and V DS=0.05V (c, d). Solid 
line: DESSIS-ISE simulations; Symbol line: analytic al 
model
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Charge modelling: Independently Biased
DG MOSFET
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(b)

Normalized gate-to-drain capacitance (a, b) and
gate-to-source capacitance (c, d) with respect
to the gate voltage, for VDS=0.05V (b,c) and 
VDS=1V (a,d); tsi=31nm. Solid line: analytical model;
Symbol line: DESSIS-ISE simulation

Normalized drain-to-gate capacitance (a, c)
and source-to-gate capacitance (b, d) 
with respect to the gate voltage, for 
VDS=1V (a, b) and VDS=0.05V (c, d);
tsi=31nm Solid line: analytical model; 

Symbol line: DESSIS-ISE simulation
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Capacitance modelling: quantum effects
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High frequency and noise modelling

� The active line approach, used to extend the model
to high frequency operation, is based on splitting
the channel into a number of elementary sections

� Our quasi-static small-signal equivalent circuit, to
which we add additional microscopic diffusion and
gate shot noise sources, is applied to each section

� Our charge control model allows to obtain
analytical expressions of the local small-signal
parameters in each segment
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High frequency and noise modelling

� In order to model noise using this technique, several approaches
have been considered:
� The contribution to noise of the length where carriers travel at

the saturation velocity must not neglected. 

� A Diffusion Coefficient is used to define the microscopicnoise
current sources, in order to consider the short channel effect. The
expression of the diffusion coefficient is valid from low tohigh
fields

� Mobility reduction should be considered along the channel.
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High frequency and noise modelling

� The active transmission line is analysed using the nodal admittance method
� Once the intrinsic admittance matrix, Yi, and admittance correlation matrix, CYi, are 

obtained, extrinsic elements are included
� Thermal noise is considered for access resistances
� Gate tunnelling current, and its associated shot noise source are added

� Using the model, we calculate the S-parameters and the usual noise parameters: 
Fmin, Rn (equivalent noise resistance) and Gopt (optimum reflection coefficient)

�



MOS-AK September 2008 B. Iñiguez 82

High frequency and noise modelling
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High frequency and noise modelling
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High frequency and noise modelling
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Conclusions

� We have discussed techniques to develop compact models in Thin-Film SOI MOSFETs
(FD SOI MOSFDETs, AM SOI MOSFETs, DG MOSFETs, GAA MOSFETs, 
FinFETs)

� Very few models are currently available for FD SOI MOSFETs in circuit simulators
� No models available for AM SOI MOSFETs
� Compact models for Multi-Gate MOSFETs are still under development

� They face important challenges for nanoscale devices: scaling with volume
inversion/accumulation, quantum confinement, hydrodinamic transport

� These effects, although considered by UFDG, are hard totake into account in a full 
compact analytical way
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Conclusions

� We have also reviewed our approaches:
� A core model, developed from a unified charge control model obtained from the 1D 

Poisson’s equation (using some approximations in the case of DG MOSFETs)
� 2D or 3D scalable models of the short-channel effects (threshold voltage roll-off, DIBL, 

subthreshold swing degradation and channel length modulation), developed by solving
the 2D or 3D Poisson’s equation using appropriate techniques

� Quantum effects have been including by using an effectiveoxide thickness which
accounts for the position of the inversion centroid

� The active transmission line approach extends the models to the high frequency and
noise analysis


