The Robuspic Project – An Overview

Christian Maier, Robert Bosch GmbH - on behalf of all partners -

Automotive Electronics

The Robuspic Project –An Overview

- → Motivation
- Organization
- → Work Packages
- → Results
- → Conclusion

Robuspic - Motivation

Smart Power circuits...

- ... typically combine:
 - Highly accurate analog circuitry
 - Digital signal processing
 - Driving heavy loads
- ... operate in an uncontrolled environment
 - Extended Temp. range
 - E-M disturbances
- ... should have good, predictable reliability in harsh environment

... should have competitive cost

Robuspic: Organization

ROBUSPIC:

Robust Mixed Signal Design Methodologies for Smart Power ICs

- → An Information Society Technologies Project Funded by the European Commission in Framework 6
- → Duration: December 2003 until November 2006

Robuspic - Organization

Partners:

- AMI Semiconductor (Belgium, Project Leader)
- Cadence (France)
- Cambridge Semiconductors (UK)
- EPFL (Switzerland)
- University of Cambridge (UK)
- IMEC (Belgium)
- KU Leuven (Belgium)
- University of Zagreb (Croatia)
- Robert Bosch GmbH (Germany)

ROBUSPIC - Work Packages

- → WP1: Compact Models
 - Development of L- and VDMOS models based on the EKV approach for the channel region
 - Development of LIGBT models
- → WP2: Reliability
 - Investigation of degradation mechanisms at DMOS and LIGBTs

2. Aging

- Development of aging models
- WP3: Sensitivity Modeling
 - Model extensions for matching, process and layout sensitivities
- → WP4: System Level Aspects
 - Methods for fast simulation on system level
 - Electro thermal simulation
 - Simulation of EMC
- WP5: Validation
 - Assessment of gain in simulation accuracy & speed

1. Models **DMOS LIGBT** 3. Sensitivity 5. Validation **Impementation** 4. System **EMC Thermal**

Automotive Electronics

VDMOS Transistor - Schematic Cross Section

LDMOS Transistor - Schematic Cross Section Source = Body Drain Gate Substrate 8

LIGBT - Schematic Cross Section

Cathode Anode

Work Package 1

DMOS Model Approach

- Base: EKV V2.6 for Channel Region Modeling
- > Drift Region modeled by voltage dependent resistor
 - Correct modeling of « quasi-saturation »
- > EKV formulation modified for charge calculation
 - > Correct modeling of bias-dependent capacitances
- Self heating effects included
- ➤ Different geometry scaling for L- and VDMOS devices

Work Package 1

DMOS Model Approach

- > 8 EKV model parameters (channel region)
- ➤ 12 Drift region parameters (R_D, C_{GD})
- ➤ 4 thermal parameters
- > 3 self heating parameters
- ➤ 4 impact ionisation parameters
- > 8 (+x) parameters for parasitics

Work Package 1: Modeling

➤ Correct W scaling for transfer and output characteristics, including g_{m max} and Self Heating

Work Package 1: Modeling

LDMOS Capacitances: Model (red) vs Measurement (black)

Automotive Electronics

Work Package 1: Modeling

LIGBT Model

- Based on Hefner model for vertical IGBTs
- Modifications for lateral IGBTs to account for differences in
 - Carrier dynamics
 - Terminal capacitances
 - Substrate effects
 - Parasitic effects (resistor, JFET)
- → Development by use of TCAD simulations & measurements at devices fabricated at CamSemi (SOI & junction isolated)
- Implementation in Pspice and Verilog-A

LIGBT - Equivalent Circuit

15

disposal such as copying and passing on to third parties.

AE/EIM1-Heinisch | 30/01/2006 | © Robert Bosch GmbH reserves all rights even in the event of industrial property rights. We reserve all rights of

Work Package 2: Reliability

- Investigations of devices under static and dynamic stress conditions
 - Temperature range -40 to 200°C
 - Consideration of process deviations
 - Identification of main stress mechanisms, also by use of TCAD
- Development of degradation models for DMOS and LIGBT device parameters (HCI)
- Implementation into the circuit models developed in WP1
- Development of supplementary circuits for life condition monitoring

Work Package 3: Layout & Process Sensitivities

- Topics addressed in this work package:
 - Investigation of process parameter variations on on-state performance

 extension to statistical model
 - Matching (Mismatch models for L- and VDMOS)
 - Scaling: Investigation of several scaling options (e.g. fingers or cells) for both DMOS and LIGBT

Work Package 4: System Level Aspects

- Investigation of Methods to speed up simulation of smart power circuits
 - Automatically generated "Black Box Models" for circuit blocks
 - Transistor Level Simulation using Fast Spice Simulators
- Development of Methods for Electro-Thermal Simulation
 - Package modeling
 - Scalable thermal impedances of power devices
 - Coupled electro thermal simulation
- Development of models and methods for EMC simulation

UNIVERSITYOF CAMBRIDGE

Work Package 4: System Level Aspects

f=10KHz,
$$V_{ac}$$
=1.0 V, V_{dc} =1.0V
R_F=100Ω, R_I=1300Ω

1.6
1.4
1.2
1.0.8
0.6
0.4
0.2

100

Time (us)

"Black Box" Model Approach: Model Generation by training of artificial neural networks

Output from ANN model (*) Output from compact model (

200

150

Automotive Electronics

50

0

Work Package 4: IC Level EMC

IC level EMC

EME and EMI HTVD measurement system

EMC aware circuit optimizations

EMC test chip

Interface for EMC simulations in Cadence environment

Work Package 4: System Level Aspects

Derivation of Scalable Model for Thermal Device Impedance

Thermal simulation Setup

Thermal Simulation Result: Thermal Impedance vs time for 3 device mounting conditions

Work Package 5: Validation

- Implementation of DMOS and LIGBT models into design environments
- Selection of demonstrator circuits
- Implementation of methods into the industrial design flows
- Assessment of new models and methods regarding accuracy and performance

Work Package 5: Validation DMOS model implementation Direct transfer **AHDLCMI** Verilog-A Simulator: Spectre/UltraSim AMIS/Cadence Verilog-A Simulator: Eldo **EPFL** C-Core Translation MAST-Shell Simulator: Saber Bosch **Automotive Electronics** AE/EIM1-Mc | 30/01/2006 | © Robert Bosch GmbH reserves all rights even in the event of industrial property rights. We reserve all rights of 24 disposal such as copying and passing on to third parties.

Robuspic - Highlights

- → Scalable models for LDMOS, VDMOS, SOI LIGBT available
- Self heating effect included
- Extension with parasitic bipolars implemented
- → DMOS Degradation investigated, analytical aging formulation and parameter degradation models available

Work Package 6: Dissemination

Robuspic Workshops:

June 2005 at ISIE Dubrovnik

Planned: June 4th, 2006 at ISPSD Naples

Planned: September 22nd, 2006 at ESSDERC Montreux

Robuspic Website:

http://www-g.eng.cam.ac.uk/robuspic/

