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Quite Many Devices Emerging  
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Courtesy of  Navraj Nandra, Synopsys 

× Continuous scaling pushes the 

More Moore devices 
 

× Device innovations along the 

More than Moore direction 
 

× System integrations 

× Logic devices for scaling: many 

candidates 
 

× Completely new device physics 

and mechanisms 
 

× Modeling is a must 



Traditional Compact Modeling 
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× A complete model takes 

long time to develop 
 

× Scattered efforts for 

specific devices 
 

× A universal model 

framework? 



Data-Oriented Modeling: Table Model 
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× Limited predictive capabilities 
 

× Large storage issues and memory 

requirements 
 

× Partial derivatives for small signal 

analysis 

[1] V. Bourenkov, et al, 2005 [2] D. Root, et al, 2012 

× Table look-up model is 

universal in some sense 
 

× Interpolation techniques to 

enhance model FOM 
 

× Loss of accuracy  
 

× Standard options for fast 

spice  



Data-Oriented Modeling: ANN Model 
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[1] Q. Zhang, et al, 1995 [2] D. Root, 2012 

× Initiated quite some time 

ago for microwave device 
 

× Features of ANN v.s. 

Requirements on SPICE 

model 
 

× Foundry dependent 

device problem 
 

× Function approximation of the neural 

network 

 

× Equivalency of model plus parameter 

extractions [back propagation] 
 

NeuronFET [2] 

First demo [1] 



ANN for A Universal SPICE Model?  
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Accuracy of Generalizations 
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× Two hidden layers for universality 
 

× Local and global features partition 

>=4 neurons 

>2 neurons 



Terminal Charge Modeling 
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[1] J. Xu, et al, 2003 

× Charge instead of capacitance 

     --charge conservation 
 

× Terminal charge (intri & extri) 

      --integral functions 

       --adjoint neural network 
 

× Separated current and charge? 

      -- intermediate electrostatics 



Pending Issues 
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Ç Temperature effects and self-heating 
 

Ç Corner modeling for device variations 
 

Ç Device and circuit reliability simulations 
 

Ç Noise modeling and integrations  ?   
 



Integration with i-MOS 
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by HKUST 

×ANN model takes into formatted data and output the „modelcard‟ 
 

× Integrated with the i-MOS framework including circuit simulations 
 

× Alpha version coming soon                   https://i-mos.org 



Wrap-up 
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× Artificial neural network for a universal compact modeling 

 
 

× Techniques for accuracy control, sizing, and dataset  

 
 

× ANN model benchmark and SPICE simulations  
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