Thermal Network Extraction in Ultra-Thin-Body SOI MOSFETs

Y. S. Chauhan^{1,2}, M. A. Karim², A. M. Niknejad² and C. C. Hu²

¹Indian Institute of Technology (IIT)

Kanpur, India

²University of California Berkeley, USA

Outline

• Introduction

• Thermal Network Characterization

Results

Other News

Introduction

• Carrier scattering leads to heat generation

• Dominant at drain end of MOSFET due to high field

• Temperature increase affects device parameters e.g. threshold voltage, mobility etc.

3

Power Density and scaling

Figure: Trend of on chip power density over the past 10 years. Solid line marks an exponential trend.

Source: E. Pop et al., "Heat Generation and Transport in Nanometer-Scale Transistors". Proceedings of the IEEE , August 2006.

Self Heating & Technology Scaling

Figure: Increase in ΔT with technology scaling

Figure: Performance degradation of a three stage ring oscillator due to self heating effect versus technology scaling

Self Heating: Effect of Structure/Technology

Evolution of MOSFET Architecture

Bulk MOSFET

SOI MOSFET

FinFET

6

- Technology scaling achieved by
 - New materials (SOI, High-K dielectric, Strained Silicon etc.)
 - Highly confined geometry
- New materials and greater confinement increased self heating effect

 Yogesh S. Chauhan

Confinement & Thermal Conductivity

- Bulk Si 50% of the heat conduction is carried by phonons with a mean-free-path greater than about 1 μm .
- For film thickness is smaller than $\sim 200nm$, 50% of the heat is carried by phonons with mean-free-paths longer than the film thickness.

Material	Thermal conductivity (W/m-K)
Si(Bulk)	149
Ge	60.2
SiO ₂	1.4
HfO ₂ (>500nm)	1.2
HfO ₂ (3nm)	0.27-0.49

Source: Ch. Jeong, S. Datta, M. Lundstrom "Thermal conductivity of bulk and thin-film silicon: A Landauer approach" JOURNAL OF APPLIED PHYSICS 111, 093708 (2012)

Impact of Self Heating

Note decrease in current with VDS

Self Heating Measurement

- Gate Current measurement
 - Requires dedicated structures
 - Measures gate temperature

Ref.: S. Khandelwal et al., "Scalable Thermal Resistance Model for single and multi-finger Silicon-on-Insulator MOSFETs", IEEE ICMTS, April 2011

• Pulsed measurement technique

- DC structures can be used
- Requires dedicated setup
- Works upto limited frequencies.

Ref.: C. Anghel et al., "Self-heating characterization and extraction method for thermal resistance and capacitance in HV MOSFETS", IEEE EDL 2004

Yogesh S. Chauhan

Figure: Output characteristics of n-channel DMOSFET. Comparison b/w steady state DC measurement and different pulse width measurement. Inset the measurement setup.

Self Heating Measurement

- Small signal conductance technique
 - DC structures can be used
 - Widely used technique

Fig. 2 Measured drain conductance against frequency for 20 μ m wide 3 μ m partially depleted SIMOX MOSFET with source connected body tie [8]

- What if there is no clear self heating free region?

Ref.: W. Redman-White et al., "Direct Extraction of MOSFET Dynamic Thermal Characteristics from Standard Transistor Structures using Small Signal Measurements", Electronics Letters, June 1993.

Ref.: Wei Jint et al., "Self-Heating Characterization for SOI MOSFET Based on AC Output Conductance", IEDM 1999

- S- parameter measurement technique
 - Versatile technique
 - Requires dedicated RF structures and measurements

Ref. 1: M. A. Karim et al., "Extraction of Isothermal Condition and Thermal Network in UTBB SOI MOSFETs", IEEE EDL 2012

Ref. 1: A.J. Scholten et al., "Experimental assessment of self-heating in SOI FinFETs", IEDM 2009

Ref. 2: N. Rinaldi et al., "Small-Signal Operation of Semiconductor Devices including Self-heating, with Application to Thermal

S-parameter measurement

• S-parameters measured using vector network analyzer (VNA) (e.g. Agilent E5071C ENA with frequency range of 100 kHz–8.5 GHz)

De-embedding

- Use de-embedding to remove parasitics
- Probe/wire parasitics are de-embedded using calibration substrate
- Pads to device parasitics are de-embedded using OPEN-SHORT de-embedding

Self Heating: Open-Short De-embedding

Yogesh S. Chauhan

Courtesy: Agilent Technologies

Issues in thermal network extraction

• No self heating free region in gds due to parasitics in short channel devices

• Electrical contribution in C_{DD} cannot explain 2-3

order decrease

Ref.: A.J. Scholten et al., "Experimental assessment of self-heating in SOI FinFETs", IEDM 2009

Issues in thermal network extraction

Impact of choosing arbitrary isothermal frequency

Figure: Extraction of DC thermal resistance (RTH0) using different arbitrary isothermal frequencies.

Our Approach: Thermal Network Extraction

- Thermal contribution in Im(Y_{DD}) dominates over electrical (substrate and/or gate resistance network) at lowfrequency
- Im(Y_DD) at V_{GS} =1.4V \propto Im(Y_DD) at V_{GS} =1.2V
 - Proportionality constant depends on the ratio of currents
- Around isothermal frequency, electrical contribution start dominating over thermal contribution to $Im(Y_{DD})$, and proportionality relationship becomes invalid
- Frequency at which splitting happens is the isothermal frequency

Figure: Measured Im(Y_{DD}) of UTBSOI MOSFET 15

Our Approach: Thermal Network Extraction

• Simultaneous fitting of $Re(Y_{DD})$ and $Im(Y_{DD})$ as both are sensitive to change in temperature.

$$Z_{\text{th}} = \frac{Y_{\text{DD}} - Y_{\text{DD}}^{\text{iso}}}{\frac{dI_{\text{DS}}}{dT_{\text{abm}}} (I_{\text{DS}} + V_{\text{DS}}.Y_{\text{DD}})}$$

$$Im(Y_{DD}) = \frac{Im(Z_{th}) \left[Re(Dn)^2 + Im(Dn)^2 \right]}{Re(Dn)} + \frac{\left[Re(Y_{DD}) - (Y_{DD}^{iso}) \right] Im(Dn)}{Re(Dn)}$$

Where,
$$D_{n} = \frac{dI_{\rm DS}}{dT_{\rm amb}} \left(I_{\rm DS} + V_{\rm DS}.Y_{\rm DD}\right)$$

Self Heating: Thermal network

Thermal impedance of nth order thermal N/W

$$Z_{\rm th} = \sum_{\rm i=1}^{\rm n} \frac{R_{\rm thi}}{1 + j \left(2\pi f\right) R_{\rm thi} C_{\rm thi}} \qquad \text{or} \qquad Z_{\rm th} = \sum_{\rm i=1}^{\rm n} \frac{R_{\rm thi}}{1 + \left(2\pi f\right)^2 \left(R_{\rm thi} C_{\rm thi}\right)^2} - j \left(2\pi f\right) \sum_{\rm i=1}^{\rm n} \frac{R_{\rm thi}^2 C_{\rm thi}}{1 + \left(2\pi f\right)^2 \left(R_{\rm thi} C_{\rm thi}\right)^2}$$

$$Re(Z_{th}) = \sum_{i=1}^{n} \frac{R_{thi}}{1 + (2\pi f)^{2} (R_{thi} C_{thi})^{2}}$$

Figure: nth order thermal network

$$\lim_{t \to \infty} (Z_{th})^{2\pi f} = \sum_{i=1}^{n} \frac{R_{thi}^{2} C_{thi}}{1 + (2\pi f)^{2} (R_{thi} C_{thi})^{2}} \quad DC \text{ Thermal resistance RTHO}$$

RTH0 =
$$R_{th}|_{f=0} = \sum_{i=1}^{n} R_{thi}$$

Order of thermal network

Figure: nth order thermal network

Accuracy increase with order of network but computational efficiency of the model goes down

 10^{6} 10⁵ Frequency (Hz) Figure: Fitting of Im(Y_{DD}) using various-order thermal networks independently. Results are shown for the self-heating dominated segment of the

W=1µm, L=30nm, NF=30

RTH0

(K/mW)

2.987

3.273 3.285

> 2ndorder thermal network 3rd order thermal network

th order thermal network

 $V_{DS} = V_{CS} = 1.2V$

Network

Order

0.1

0.0

Results

• Third order network extracted by simultaneous fitting of $Re(Y_{DD})$ and $Im(Y_{DD})$

Figure: Measured and extracted Re(Y_{DD}) and $100 \text{ Im}(Y_{DD})$ on 30nm and 100nm length effe UTBSOI devices. $V_{GS} = V_{DS} = 1.2 \text{V}$.

Figure: DC temperature rise for 30nm and 100nm length devices due to self heating effect.

Self Heating – Should we care?

- Digital circuits operate in 1-2 GHz range
 - No effect of self heating ©
- RF circuits operate in 5-100 GHz range
 - No effect of self heating ☺

- Analog circuits operate in KHz-MHz range
 - Self heating is dominant up to ~30-40 MHz
 - Analog designers should be careful

Conclusion

- A better approach for thermal network extraction was presented
- Temperature may rise by more than 100°C due to self heating effect in SOI devices
 - I_{dsat} decreases around 4-5%
- Digital and RF circuits doesn't get affected by SHE
 - Analog circuits do have performance degradation
- Ref.
 - M. A. Karim, Y. S. Chauhan, S. Venugopalan, A. B. Sachid, D. D. Lu, B. Y. Nguyen, O. Faynot, A. M. Niknejad, and C. Hu, "Extraction of Isothermal Condition and Thermal Network in UTBB SOI MOSFETs", IEEE Electron Device Letters, Vol33, No.9, Sept. 2012.

Other News

- Released BSIM6.0.0-beta8 in Aug. 2012 with improved global scaling
 - Received Excellent feedback on the model
- Released CMC standard BSIM-CMG 106.1.0 in Sept. 2012
- Released BSIM4.7.1-beta for testing
- Released BSIMSOI4.5-beta for testing

Acknowledgment

- Chandan Yadav (IIT Kanpur)
- Sourabh Khandelwal (NTNU, Norway)
- Bich-Yen (SOITEC, USA)
- Olivier Faynot (LETI, Grenoble)
- Darsen Lu (IBM, Fishkill)
- Maryam (Sahar) Tabesh (UCB)
- Cristian Marcu (UCB)
- Amin Arbabian (UCB)